\begin{tabbing} (\=(AssertBY $\parallel$[]$\parallel$ $\geq$ 0 ((Reduce 0) \+ \\[0ex]CollapseTHEN ((Auto\_aux (first\_nat 1:n) ((first\_nat \-\\[0ex]2\=:n),(first\_nat 3:n)) (first\_tok :t) inil\_term)))$\cdot$) \+ \\[0ex]CollapseTHEN (InstConcl [$\lambda$$i$. \-\\[0ex]if $i$ $\leq$z $\parallel$$L_{1}$$\parallel$ then $f_{1}$($i$) else $f$($i$ {-} $\parallel$$L_{1}$$\parallel$) fi ]))$\cdot$ \end{tabbing}